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A multispin coding program for site-diluted Ising models on large simple cubic 
lattices is described in detail. The spontaneous magnetization is computed as a 
function of temperature, and the critical temperature as a function of concen- 
tration is found to agree well with the data of Marro et al. (4) and Landau (3) for 
smaller systems. 
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1. I N T R O D U C T I O N  

In the randomly dilute quenched Ising model investigated here each site on 
a simple cubic lattice is randomly either occupied, with probability p, by a 
spin �89 atom, or by a nonmagnetic atom. The spins interact via nearest- 
neighbor exchange energies J. The Curie temperature To(p) decreases with 
decreasing p and reaches zero at the percolation threshold Pc (Ref. 1).3 For 
equilibrium properties one would like to know what the critical exponents 
would be if To(p) is approached at fixed p. Theoretically (1'2) one expects 
0 < p < po exponents independent of p but different from those for p = 1. 
However, older simulations (3) up to system size 303 found no change in 
these exponents compared to p = 1, and recent work (4) with system size 403 
found them to change continuously with p. Thus we try to find out, by 
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simulating systems with 903 spins, if these latter results again are due to the 
finite system size. 

For dynamic aspects one would like to know (5--~1) how the relaxation 
time diverges at the percolation threshold and how the magnetization 
decays to zero there if one starts the simulation with all spins parallel. We 
study this relaxation time, (5) along the line e x p ( -  2J/kT)= 1 -  P/Pc in the 
T-p diagram, which is more convenient for Monte Carlo simulation than 
the lines T = 0  or p =  po. Traditional scaling theory (1~ expects the same 
exponents along any straight line in the exp( -2J /kT)  versus p diagram 
which approaches the percolation point T =  0, p = Pc with a slope not 
tangent to the phase transition line. (~2) Again a system size 903 is used and 
we work with the nonlinear relaxation time. (~3~ 

The main part of this paper consists of an explanation of how to 
program dilute Ising models with multi-spin coding (Section 2) whereas 
our results are summarized in Section 3. 

2. COMPUTATIONAL DETAILS 

MC simulation of large cubic dilute Ising modes (903) were carried 
out on a Cyber CDC 176 scalar computer. In order to accommodate the 
903 lattice sites within the memory of this computer we used multispin 
coding. In this technique one stores many spins in one single computer 
word consisting of 60 bits and performs logical bit-bit operations with 
them. The most common among these logical operations are logical OR, 
logical AND, exclusive or XOR, and SHIFT (see Ref. 14 for an ifitroduc- 
tion). Pure Ising model systems as large as 10803 had been simulated 
earlier by this method (15) and complete computer programs used for these 
simulations have been published. (16'17) We have modified the latter 
program so as to adopt it for dilution. The basic idea is very similar to that 
adopted (tS~ for the simulation of the Random-Field Ising Model (RFIM). 
In the latter problem one has to store not only the spin orientation at every 
lattice site but also the orientation of the (random) magnetic field at that 
site. In the case of pure Ising model on simple cubic lattice with no random 
field, one stores each spin in three bits (in fact, every third bit from the left 
is either 1 or 0 depending on the corresponding spin being "up" or 
"down"), and thus 20 spins can be stored in a 60-bit computer word. In the 
case of the RFIM, every fourth bit from the left was used to store the 
orientation of the (random) magnetic field at the spin which was being 
stored in the preceeding three bits (see Ref. 18). Therefore, in that case, 15 
spins could be stored in a 60-bit computer word. 

In the dilute Ising model (there is no random external field as in 
RFIM) we have used every fourth bit from the left to store the occupation 
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number of the corresponding lattice site; occupation number 1 corresponds 
to the site being occupied by a spin, otherwise the occupation number is set 
equal to zero. For economy of words, the sites occupied by the magnetic 
atom (spins) will be called "occupied"; sites containing no spin will be 
referred to as "empty." Suppose p is the concentration of the occupied sites. 
The spatial configuration (i.e., the configuration of the randomly 
"occupied" sites), was initialized by the FORTRAN statement 

ICI = ICI.OR.(IFIX(1 + p - RANF(0))) 

followed by a circular left shift of ICI by four bits. At the beginning ICI 
was 0 and at the end of its initialization the spin word IS(/, aT, K) was set 
equal to ICI, for K =  1, 2,..., L, J =  1, 2,..., L and I =  1, 2,..., L L  = L/15. This 
kind of initialization of the random occupation of the sites also produces 
the initial orientation of the spins--all the spins point "down" (every third 
bit of the 4-bit parcels being zero), no matter whether the corresponding 
lattice site is occupied or empty! In other words, we have "ghost spins" at 
the empty sites. However, in our subsequent computation we never com- 
pute the number of down-spin neighbors of any arbitrary site directly from 
the number of zeroes at the third bits, but we shall infer it indirectly from 
the difference between the number of occupied sites and the number of up- 
spin neighbors. Moreover, the "ghost spins" at the empty sites will never be 
flipped during the simulation. 

As stated earlier, the occupation status and the spin orientation at an 
arbitrary lattice site are stored at the third and the fourth bits, respectively, 
of each of the 4-bit parcels. In order to read the content of the fourth bit 
ignoring the contents of the first three bits, we define a mask IEN1 con- 
sisting of the bit string 000100010001 .... (15 repetitions of the 4-bit sequence 
0001). Now, with ICI as the abbreviation for IS(/, J, K), 

IOCC = ICI.AND.IEN1 

contains only the desired information on the occupation number of the 15 
sites stored in the corresponding computer word. Similarly, in order to 
read the contents of the first three bits, ignoring the fourth one in each of 
the 4-bit parcels, we define another mask IEN14 consisting of the bit string 
111011101110 .... (15 repetitions of the 4-bit sequence 1110). Now, the 
desired information is contained in the last three bits of the 4-bit parcels of 

ISPIN = SHIFT((ICI.AND.IEN14),59) 

Next we have to compute the energy of interaction JS iXS j  between each 
spin Si and its occupied nearest neighbors. (In this discussion we set J =  1 
and kB = 1.) Then we compute the change in energy AE that would take 
place if the spin at the ith site is flipped. In the usual representation of Ising 
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spins by 1 and - 1  the sum XSj on a simple cubic lattice without dilution 
can have the even integer values between - 6  and +6, i.e., ZS)=-6,  
-4,..., 4, 6 and, consequently, the corresponding AE= 12, 8,..., 8, - 1 2  if 
the central spin St is up. An effect of dilution is that now odd-integer values 
of ZSj are also allowed, i.e., ZSj = -6 ,  - 5  ..... 5, 6. Therefore, now all the 
even integers between 12 and - 12 are allowed values of AE. 

Second, in our simulation we have used the (0, 1) representation of the 
Ising spins where 1 stands for up and 0 stands for down. Therefore, proper 
care has to be taken in computing AE. We first compute two quantities 
IOCCT and ISPINT (see Table I). Each of the 4-bit parcels of IOCCT 
gives the total number of occupied nearest-neighbor sites of the spin stored 
in the corresponding four bits of IS(/, J, K). Similarly, each of the 4-bit 
parcels of ISPINT gives the total number of up-spin nearest-neighbors of 
the spin stored in the corresponding four bits of IS(/, J, K). Then each of 
the 4-bit parcels of (IOCCT-ISPINT) gives the total number of down-spin 
nearest-neighbors of the spin stored in the corresponding four bits of 
IS(/, J, K), and each of the 4-bit parcels of ISPINT-(IOCCT-ISPINT) 
gives the difference between the number of up-spin and down-spin 
neighbors of the spin stored in the corresponding four bits of IS(/, J, K). 
Now IEN7 consists of the bit string 01110111... (15 repetitions of the 4-bit 
sequence 0111). Thus, the numbers stored in each of the 4-bit parcels of the 
quantity 

IN = IEN7 + ISPINT - (IOCCT-ISPINT) 

can vary between 1 and 13. However, we have to take the spin of the cen- 
tral site (I, J, K) into account in order to compute the interaction energy. 
ISPI5 has I i i1  in the 4-bits if the corresponding bits in IS(/, J, K) corres- 
pond to an up spin and has 000 otherwise. Thus, the numbers stored in 
each of the 4-bit parcels of IN + ISPIN can vary between 1 and 14. Each of 
the 4-bit parcels of A = XOR(IN + ISPIN, ISP15) contains the information 
about the change in energy AE, namely, that 2 ( A - 7 )  is the expected 
energy change if the spin in IS(/, J, K) which corresponds to that 4-bit par- 
cel is flipped. Now, as in the case of the pure Ising model, (17) one has to 
investigate separately for each spin whether or not the spin under con- 
sideration has to be flipped. This requires comparison of the corresponding 
Boltzmann number with a random number, as in usual Metropolis 
algorithms. We read the contents of the last (rightmost) four bits of 
I N = X O R ( I N + I S P I N ,  ISP15) by a logical AND with the number 
...00001111(=15) and then collect the corresponding flip probability 
exp(2 �9 (IN - 7)/T) under this index in our table of the Boltzmann factors. 
(The Boltzmann factors exp(2 �9 (I-- 7)/T) for I =  1, 13 were stored once for 
all for a given T in the beginning of the computation.) The random num- 
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Table I. Ma in  Part of the FORTRAN Program 

C 
250 
251 

10 

11 

12 

54 

& 

& 

& 

& 

& 
& 
& 

& 

DO 251 K =  1, L 
DO 251 J = 1, L 
DO 251 I = 1, LL 
ICI = 0 
DO 250 II = 1, 15 
ICI = ICI.OR.(IFIX(1 + P - RANF(II)))  
IF(RANF(II) .LT.P)ICI = ICI.OR.1 
ICI = SHIFT(ICI, 4) 
IS(I, J, K) = ICI 
DO 7 ITIME = l, ITIMX 
D O 4 K = l , L  
KP1 = I N D P I ( K )  
KM1 = I N D M I ( K )  
D O 4 J = l , L  
JP1 = INDP1 (J) 
JM1 = INDMI(J )  
D O 4 I = l ,  LL 
ICI = IS(I, J, K) 
IF(I.EQ.1)GO TO 10 
IF(I .EQ.LL)GO TO 11 
IOCCT = (IS(I - 1, J, K).AND.IEN1) + (IS(I + l, J, K).AND.IEN1) 
ISPINT = (SHIFT((IS(I - 1, J, K).AND.IEN14), 59)) + 

(SHIFT((IS(I + 1, J, K).AND.IEN14), 59)) 
GO TO 12 
IOCCT = (IS(2, J, K).AND.IEN1 ) + ((SHIFT(IS(LL, J, K), 56)).AND.IEN1 ) 
ISPINT = (SHIFT((IS(2, J, K).AND.IENI4),  59)) + 

(SHIFT(((SHIFT(IS(LL, J, K), 56)).AND.IEN14), 59)) 
GO TO 12 
LLM1 = LL -- 1 
IOCCT = (IS(ELM1, J, K) .AND.IEN1)+ ((SHIFT(IS(I,  J, K), 4)).AND.IEN1) 
ISPINT = (SHIFT((IS(LLM1, J, K).AND.IEN14), 59)) + 

(SHIFT(((SHIFT(IS(1, J, K), 4)).AND.IEN14), 59)) 
IOCCT = IOCCT + (IS(I, JM1, K).AND.IEN1) + (IS(I, JP1, K).AND.IEN1 ) 

+ (IS(I, J, KM1).AND.IENI)  + (IS(I, J, KP1).AND.IEN1) 
ISPINT = ISPINT + (SHIFT((IS(I, JM1, K).AND.IEN14), 59)) 

+ (SHIFT((IS(I, JP1, K).AND.IEN14), 59)) 
+ (SHIFT((IS(I, J, KM1).AND.IEN14), 59)) 
+ (SHIFT((IS(I, J, KP1).AND.IEN14), 59)) 

IN = IEN7 + ISPINT - (IOCCT-ISPINT) 
ISPIN = SHIFT((ICI.AND.IEN14), 59) 
ISP15 = ISPIN.OR.SHIFT(ISPIN, 1)~OR.SHIFT(ISPIN, 2) 
.OR.SHIFT(ISPIN, 3) 
IN = XOR(IN + ISPIN, ISP15) 
ICH = 0 
DO 3 I I =  1, 15 
IN = SHIFT(IN, 4) 
ICH = SHIFT(ICH, 4) 
ICDC = ICDC �9 M U L T  
ID 1 = 1CDC - IEX(IN.AND.15) 
IF(LD1 )ICH = ICH.OR.2 
CONTINUE 
ICH = ICH.AND.SHIFT ICI.AND.IEN1, 1) 
IS(I, J, K) = XOR(ICI, ICH) 
CONTINUE 
M = 0  
D O 5 4 K = I , L  
D O 5 4  J = I , L  
DO 54 I = I ,  LL 
M = M + COUNT(IS(I ,  J, K).AND.IEN2) 
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bers, required for comparison, were generated, following Kalle, as random 
integers between 1 and 2 ** 48 by a simple multiplication of a number by a 
suitable multiplier. Then the subtraction of the Boltzmann factor IEX, 
properly normalized by a factor 2 ** 48, from ICDC yields a 0 or 1 in the 
last (rightmost) bit of the computer word 

ID 1 = ICDC - IEX(IN.AND. 15) 

depending on whether ICDC is larger or smaller than IEX. Next we 
initialized a changer word ICH to be 0 (all the bits are set to 0). With 
the help of a logical variable LDI (LD1 is equivalenced to IDI in the 
beginning of the program), we change the third bit of the corresponding 
4-bit parcel in the changer word ICH to a 1 (logical OR with number 2) if 
the spin has to be flipped; otherwise we keep the zero there. However, we 
must take into account the fact that the "ghost spins" at the empty site 
must not be flipped. In order to implement that scheme, we compute 

ICH = ICH.AND.SHIFT(ICI.AND.IEN1, 1 ) 

If a lattice site is occupied, the corresponding four bits in ICH remain 
unaltered by this operation. On the other hand, if a lattice site is empty, the 
corresponding four bits in ICH are set equal to zero by this operation. 
Finally, XOR(ICI, ICH) flips or does not flip the individual spins 
depending on whether there is a 1 or 0 at the third bit of the corresponding 
4-bit parcel in ICH. 

3. R E S U L T S  

The longest Monte-Carlo time up to which we continued the 
simulation for a given p and T is 8000 MCS. The To(p) values thus deter- 
mined are shown in Table I. The effective exponents were determined from 
the equilibrium magnetization data for reduced temperatures (To-T)/Tc 
varying between 0.03 and 0.1. The effective exponent/3 thus computed was 
found to increase continuously with the dilution (/3 = 0.29, 0.28, 0.31, and 
0.37 for p = 1.00, 0.95, 0.90, and 0.80, with error bars near +_0.02). Thus, 
while Marro et al. (4) found results differing from those of Landau (3~ by 
using larger systems (L = 40 instead of L up to 30), we went to even larger 
systems (L = 90)  and confirmed the trend observed by Marro et al. 
However, we believe that this trend is a consequence of the fact that in 
order to observe true critical behavior one needs to compute the 
equilibrium magnetization much closer to the critical point. With our data 
we are unable to distinguish reliably between a continuous variation of the 
true exponent /3 with p, and the theoretically expected p-independent /3 
combined with a p-dependent amplitude for a correction-to-scaling term. 
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Table I1. Concentrat ion Dependence of the 
Critical Temperature 

P Tc(p)/Tc(I) 

1.0 1.0 _+_+ 0.0013 
0.95 0.9451 • 0.0013 
0.90 0.8935 _ 0.0013 
0.80 0.7771 • 0.0013 
0.70 0.6750 _ 0.0013 
0.60 0.5563 • 0.0013 
0.50 0,4363 _+ 0.0013 
0.40 0.3212 + 0.0025 
0.35 0.2475 + 0.0025 
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Such an analysis could not be achieved with this general-purpose computer 
and remains a challenge for special-purpose machines. 

For  the nonlinear (13) relaxation t ime  z=SM( t  ) dt we have already 
reported our results. (5/ (We start with all spins up and then let them flip 
with probability 1/(1 + exp(AE/kT) where AE is the energy change connec- 
ted with that change.) Mainly we found that a normal power law, 
log r o c l o g ( p c - p ) + . . - ,  does not fit the data well, whereas a parabolic 
fit, (6'7'1~ log r oc log2(pc -- p) + const, log(pc -- p) + "' ", or an exponential 
variation, like log roc 1~(pc-p) ~/2, work nicely. The data are also con- 
sistent with a power divergence at a shifted critical point near p = 0.30. The 
decay of M(t) from about unity to about zero is roughly logarithmic in 
time, whereas a power law in t fits badly. Additional simulations at p = Pc 
for various temperatures were qualitatively consistent with our more 
accurate data along the line e x p ( -  2J/kT)= 1 -P/Pc. 
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NOTE A D D E D  IN PROOF 

For the square lattice, S. Jain (J. Phys. A 19, Letters), gives further 
Monte Carlo results on correlation function and relaxation; and B. Derrida 
et al employ the "exact" transfer matrix technique to check for universal 
behavior. 
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